	Alternative method 1 large rectangle – 4 squares			
	x(x + 5)	M1		
	$x^2 + 5x - 400 = 1000$ or $x^2 + 5x - 400 - 1000 = 0$ or $x^2 + 5x = 1000 + 400$ with M1 seen	M1dep	400 may be seen as 4 × 10 ² or 4 × 100 oe equation with brackets expanded and 400 and 1000 seen	
44-1	$x^2 + 5x - 1400 = 0$ with M2 seen	A1	must have = 0	
1(a)	Alternative method 2 three vertical rectangles			
	$(x + 5)(x - 20)$ or $(2 \times)10(x - 15)$	M1	(x - 20) may be seen as $(x - 10 - 10)(x - 15)$ may be seen as $(x + 5 - 10 - 10)$	
	$x^2 - 20x + 5x - 100 + 20x - 300$ = 1000 or $x^2 - 15x - 100 + 20x - 300 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded and 100 and 300 and 1000 seen allow 150 seen twice for 300	
	$x^2 + 5x - 1400 = 0$ with M2 seen	A 1	must have = 0	

	Alternative method 3 three horizontal rectangles			
	$x(x-15)$ or $(2 \times)10(x-20)$	M1	(x - 20) may be seen as $(x - 15)$ may be seen as	
	$x^2 - 15x + 20x - 400 = 1000$ with M1 seen	M1dep	oe equation with bracket 400 and 1000 seen allow 200 seen twice for	
	$x^2 + 5x - 1400 = 0$ with M2 seen	A 1	must have = 0	
	Alternative method 4 central recta	ngle + fou	r outer rectangles	
$(x-15)(x-20)$ or $(2 \times)10(x-15)$ or $(2 \times)10(x-20)$		M1	(x - 20) may be seen as $(x - 15)$ may be seen as	
1(a) cont	$x^2 - 20x - 15x + 300 + 20x - 300 +$ $20x - 400 = 1000$ or $x^2 - 35x + 300 + 20x - 300 + 20x$ $- 400 = 1000$ with M1 seen	M1dep	oe equation with brackets expanded at 300 seen twice and 400 and 1000 see allow 150 seen twice for one of the 300 allow 200 seen twice for 400	
	$x^2 + 5x - 1400 = 0$ with M2 seen	A 1	must have = 0	
	Additional Guidance			
	If 1st M1 seen award M1 even if expr	ession is	not subsequently used	
	For M1 allow multiplication signs eg $x \times (x + 5)$			M1
	$x(x+5) = x^2 + 5x$ $1000 + 400 = 1400$			M1
	$x^2 + 5x = 1400$ (previous line shows	d 400)	M1	
	$x^2 + 5x - 1400 = 0$			
	$x(x+5) = x^2 + 5x$			M1
	$x^2 + 5x = 1400$ (equation does not have 1000 and 400)			M0
	$x^2 + 5x - 1400 = 0$			A0
	Only equation seen is $x^2 + 5x - 1400 = 0$ the maximum mark is M1			

	No and valid reason	B1	eg No and x cannot be negative context)	(in this
	Ad	ditional (Guidance	
	If neither box is ticked condone if No is clearly stated in working lines			
	Yes or both boxes ticked		E	30
	Allow 'it' to represent x			
1(b)	No and x is (only) 35			31
	No and it cannot be -40			31
	No and the width would be negative			31
	No and the width should be positive			31
	No she put –40			31
	No and you can't have two answers			30
	No and the answers are too big			30
	No and it should be 40 (and -35)		E	30

Q	Answer	Mark	Comments
	Alternative method 1 Shows alge	braically t	hat the angles are equal
	4 <i>x</i> + 40	M1	may be embedded or on the diagram
	x + 2(2x + 20) or $x + 4x + 40$	M1	
	x + 4x + 40 = 5x + 40 and Yes	A 1	
			n equation for angles at a point and 40 or $x + 2(2x + 20)$
	4x + 40	M1	may be embedded or on the diagram or implied
			eg implied by $10x + 80 = 360$
	x + 2(2x + 20) + 5x + 40 = 360		oe equation eg $10x + 80 = 360$
	or	M1	(x =) 28 may be on the diagram
	x + 4x + 40 + 5x + 40 = 360		
2	or (x =) 28		
	140 + 40 = 180 and Yes		oe
	or 28 + 152 = 180 and Yes	A1	must obtain ($x =$) 28 from one expression and substitute ($x =$) 28 into a different expression
	angles on a	line using	meter. Derives and solves an equation for $5x + 40$ and substitutes into $2(2x + 20) + 5x + 40$
	5x + 40 = 180	M1	
	$(x =) (180 - 40) \div 5$	Midon	oe
	or (x =) 28	M1dep	(x =) 28 may be on the diagram
	28 + 152 = 180 and Yes		oe
	or 28 + 152 + 140 + 40 = 360 and Yes	A1	must obtain ($x =$) 28 from one expression and substitute ($x =$) 28 into a different expression

	Alternative method 4 Assumes line is a diameter. Derives and solves an equation for angles on a line using $x + 2(2x + 20)$ and substitutes into $5x + 40$ or $x + 2(2x + 20) + 5x + 40$		
	x + 2(2x + 20) = 180 or x + 4x + 40 = 180	M1	
	$(x =) (180 - 40) \div 5$ or $(x =) 28$	M1dep	oe (x =) 28 may be on the diagram
	140 + 40 = 180 and Yes or 28 + 152 + 140 + 40 = 360 and Yes	A1	oe must obtain (x =) 28 from one expression and substitute (x =) 28 into a different expression
2	Alternative method 5 Assumes line is a diameter. Derives and solves two equations for angles on a line/angles at a point		
cont	5x + 40 = 180 or x + 2(2x + 20) = 180 or x + 4x + 40 = 180 or x + 2(2x + 20) + 5x + 40 = 360 or x + 4x + 40 + 5x + 40 = 360	M1	
	$(x =) (180 - 40) \div 5$ or $(x =) 28$	M1dep	oe (x =) 28 may be on the diagram
	Obtains (x =) 28 from two equations for angles on a line/ angles at a point and Yes	A1	

	Additional Guidance				
	Choose the scheme that favours the student				
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts				
	Correct response with other incorrect work	M1M1A0			
2 cont	Alt 1 $2(2x + 20) = 4x + 20$ followed by $x + 4x + 20$ Alt 1 $x + 4x + 20$ with $2(2x + 20) = 4x + 20$ not seen Apply marks in a similar way in alts 2, 4 and 5				
	(x =) 28	M1M1			
	Allow ($x = 28$ to be embedded	M1M1			
	No method marks scored with a value of $x \neq 28$ substituted into $5x + 40$ and $x + 2(2x + 20)$ giving the same value				
	Yes can be implied eg Alt 1 $x + 4x + 40 = 5x + 40$ and It is a diameter	M1M1A1			

Q	Answer	Mark	Comments	
	Alternative method 1 – horizontal split			
	x(x-2) and $3(x-5)$	M1	oe may be seen as two areas	
	$x^2 - 2x + 3x - 15 (= 75)$	M1dep	oe expression with all brackets expanded	
	$x^2 - 2x + 3x - 15 = 75$		with full working seen	
	and $x^2 + x - 90 = 0$			
	or	A1		
	$x^2 + x - 15 = 75$			
	and $x^2 + x - 90 = 0$			
	Alternative method 2 – vertical split			
	(x-5)(x+1) and $5(x-2)$	M1	oe may be seen as two areas	
	$x^2 - 5x + x - 5 + 5x - 10$ (= 75)		oe expression with all brackets expanded	
3(a)	or	M1dep		
	$x^2 - 4x - 5 + 5x - 10 $ (= 75)			
	$x^2 - 5x + x - 5 + 5x - 10 = 75$		with full working seen	
	and $x^2 + x - 90 = 0$			
	or	A1		
	$x^2 - 4x - 5 + 5x - 10 = 75$			
	and $x^2 + x - 90 = 0$			
	Alternative method 3 – large recta	ngle subt	ract 3 × 5	
	$x(x + 1)$ and 3×5	M1	oe may be seen as two areas	
	$x^2 + x - 15 (= 75)$	M1dep	oe expression with brackets expanded and 3 × 5 evaluated	
	$x^2 + x - 15 = 75$ and $x^2 + x - 90 = 0$	A1	with full working seen	

Q	Answer	Mark	Commen	ts
	Alternative method 4 – split into three areas			
	3(x-5) and $(x-2)(x-5)$ and $5(x-2)$	M1	oe may be seen as three	areas
	$3x - 15 + x^{2} - 2x - 5x + 10 + 5x - 10 (= 75)$ or $3x - 15 + x^{2} - 7x + 10 + 5x - 10$ (= 75)	M1dep	oe expression with all br	ackets expanded
3(a) cont	$3x - 15 + x^{2} - 2x - 5x + 10 + 5x - 10 = 75$ and $x^{2} + x - 90 = 0$ or $3x - 15 + x^{2} - 7x + 10 + 5x - 10 = 0$	A1	with full working seen	
	$3x - 15 + x - 7x + 10 + 3x - 10 - 75$ and $x^2 + x - 90 = 0$			
	Additional Guidance			
	Ignore attempts to solve the equation or substituting values for x			
	Condone missing end bracket for M1			
	Condone missing pairs of brackets if recovered eg $3 \times x - 5$ recovered to $3x - 15$			

Q	Answer	Mark	Commer	its
	(x-9)(x+10) (=0) and answer 9	B2	B1 $(x-9)(x+10) (= 0)$ and answer 9 and -10 SC1 $(x+9)(x-10) (= 0)$ and answer 10))
	Additional Guidance			
3(b)	If no response is seen, check part (a)	reditworthy work		
	Answer 9 with no working can be awarded up to B2 from correct factorising seen in part (a) Answer 9 from quadratic formula or completing the square			
	Answer 9 and -10 from quadratic formula or completing the square			В0
	Answer from trial and improvement only			В0

Q	Answer	Mark	Comments	
4(a)	11 5 4 or 10 7 3 or 10 6 4 or 9 8 3 or 9 7 4 or 9 6 5 or 8 7 5	B2	any order B1 answer of three positive any order with sum 20 eg 17 2 1 or $9\frac{1}{2}$ $8\frac{1}{2}$ 2 or 10 5 5 or $6\frac{2}{3}$ $6\frac{2}{3}$ $6\frac{2}{3}$ or correct equation in w , x and eg $4w + 4x + 4y = 80$ or w	y
	Additional Guidance			
	Ignore attempts to work out the volun	ace area	B1	
	Negative numbers and/or zero used			В0
	wxy > 200 or wxy = 200			В0
	Allow 6. $\overset{\bullet}{6}$ for $6\frac{2}{3}$			

Q	Answer	Mark	Comments
5(a)	The number of blueberries in the tub	B1	